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ABSTRACT
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The orbit-orbit, spin-spin and spin-orbit Hamiltonians

of the Breit-Paull approximation are expressed in terms of

irreducible tensors. One- and two-center expansions are
given in a form in which the coordinate variables of the
interacting particles are separated. In the one-center ex-

pansions of the orbit-orbit and spin-orbit Hamiltonians the
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1., Introduction

Relativistlc effects cause energy §plittings and energy
shifts in atoms and moiecules. They are\responsible for
certain “forbidden transitions®™ which are often significant
in spectfoscopy. These effects also modify the interaction
between atoms and mo;gggles at large separations.

The lowest order relativistic corrections tc the energy
of a system can be calculated by using the Breit-Paull
Hamiltonian. Corrections of order higher than a2 (where a
is the fine structure constant) cannot be obtained consis-
tently in this approximation. This Hamiltonian is i1imited
to systems containing nuclei with Z «137. However, this
does not seem to be a practical limitation for many pro-
blems since the valence electrons are shielded by the inner
shell electrons and thus are not appreciably affected by
the bare nuclear charges. In iong range force calculations
the Breit-Paull approximation is valid for intermoleculiar
separations less than the wavelength of the characteristic

transition in the molecules.l’2

At larger separations
retardation effects become more important and quantum elec-
trodynamics must be used to calculate the higher order
correctionso3
In this paper one-and two-center expansions for the
orbit-orbit, spin-spin and spin-orbit Hamiltonians are

derived using the algebra of irreducible tensors.u’5 This




technique makes it possible to separate the coordinate
variables of the interacting particles. If product wave
functions are used, then the matrix elements can be evalu-
ated in a straightforward manner.

In the one-center expansions the coefficient involving
the radial variables contains an infinite sum. In the case
of the orbit-orbit and spin-orbit Hamiltonians, the use of
the gradient formula results in a finite sum. This tech-
nigue has also been used by Blume and Watson6 for the spin-
orbit Hamiltonian.

In the two-center expansions only the expressions for
non-overlapping charge distributions are discussed in detail.
The general case, however, can be treated using the same
techniques.

For other =xpansions and integrations of the gpin-

spin Hamiltonian see Ref. 7.




2. The Breit-Pauli Hamiltonian

The following Breit-Paulil Hamiltonian8 describes the
interactions of electrons moving in a nuclear Coulomb field.
The operators for the spin and linear momentum of the Jj-th
electron are denoted by £ and p (1/&“7 respectively,
All the results are in atomic unlts (energy in e /a units,
length in a, units where abis the Bohr radius). The vector
going from electron k to electron J is er = £J-£k We
use Greek indices to designate nuclei and Roman indices to
represent electrons.

The derivation of the Breit;Pauli Hamiltonian is dis-

9,10

cussed for a 2-electron atom by Bethe and Salpeter.

The generalization to a molecular system is given by

Hirschfelder, Curtiss and Bird.11 The grouping of the terms
is &imilar to the one used by Bethe and Salpeter‘:9
2
H = He + o« H (2-1)

where a = eQ/ﬁc is the fine structure eenstant;

(2-2)
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Eq. (2-2) is the usual non-relativistic Hamiltonian for the
system. Z, is the nuclear charge of the a-th nucleus.

The first term in the relativistic Hamiltonian, Hrel’
gives the orbit-orbit interaction corresponding to the
classical electromagnetic coupling of the electrons.

The coupling of the spin magnetic moments 1is given by
H... The Fermi contact term involving .the delta function

SS

gives the behaviour of this Hamiltonian when&:lj = 0. The

k
second term is only applicable whenlajk # 0.

H represents the spin-orbit magnetic coupling between

SL
electrons.

HP is the relativistic correction due to the wvariation
of mass with velocity.

H, is a term characteristic of the Dirac theory, which

D
has no simple interpretation.

In the above equations the nuclel are considered fixed
(Born-Oppenheimer approximation) and we assume no external
electric or magnetic flelds.

In order to derive the one-and ftwo-center expansions
of the Breit-Pauli Hamliltonian, it is convenient to use the
algebra of irreducible spherical tensors.4’5 This method
allows the separation of the variables into product form
and permits the application of the Wigner-Eckart theorem12

in the calculation of matrix elements. The first step.in

this procedure is to write the various terms in the Breit-




Pauli Hamiltonian as contractions of irreducible tensors.
To 1llustrate the method of contraction, we consider HLL
specifically and then state the results for the other rela-
tivistic Hamiltonians without derivation.

In the first term of H;, one has to contract

e
This can be done by introducing the following spherical
tensor of the aribltrary vector ﬁ?
T = w(hihy) T = A
= x T L . = _
) VT v U iy : (2-9)

Then

Z(-o TeOT ) (2-10)

The second term of HLL can be writfen as a double contrac-

tion. The first contraction 1s as follows

Lkﬁ, = (3:;)2__') qj Qf;m) 1- (ﬁ) (2-11)

oP)

where’ﬂl(aﬂk) is a solid spherical harmonic which in general

13

is defined as

Em(ﬁ) = re\/;(e)p) _ (e-12)

4




Then
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The two solid spherical harmonics can now be coupled to-

gether;i4

“ " 2 3 |
fB' QJK)Hn (..G") = rq\K ;[Wmﬂ)]'lzc(ll!) U;?)

7

ueoo)YW ) (W

dK’

The Clebsch-Gordan coefficient C(1,1,@;00) vanishes unless
(1 +1 +@) is even and ¢ is in the range O to 2.

Using Egs. (2-10) - (2-14), one obtains:
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The first part of Eq. (2—15) contains a contribution from
the ¢ = 0 term of Eq. (2-14). The Clebsch-Gordan coefficient
in Egq. (2-15) can be given in closed form.

h

(2+w0+) (2-w-7)! (2-16)
clizj o) L(lm)fo-w)'(w) =)

In a similar fashion the spin-spin Hamiltonian can be

contracted to yield,l6

-~
o
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It is sometimes convenient to couple the sping together

to form a total spin tensor defined by4’5.
-y ~V+ K
T, (34,80) = Z c(1re;-x -V+)<)T(SJ)T (5¢) (2-18)

Then the Fermi contact term contracts to a scalar and in

the spin dipele-dipole term the spin transforms like a

second rank ftensor;
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In the spin-orbit Hamiltonian, HSL’ one can first in-

W
troduce a tensor Tltgxg) to give

Hg, = z Zﬁ‘z(") T(-pxﬁ)—':.ufés)
2> =2 DT ooxe
7_% ,:‘i ;- [ \ (‘gncxf,;) (2-20)
S0 (o R) | T, sy)

In the first term of Eq. (2-20), (‘I‘;jBX}‘).J) is the orbital
‘angular momentum operator of electron J with respect to
nucleus B. The vectors Sﬁjkggk)’ however, are not angular
momentum operators about a fixed center. Here it is con-
venient to write them as a contraction which separates

the position variables from the momentum operator;

W
I (s zxf)-“vﬁZC(m 7, 0" 7)'3 () 1, l (,13) _(2-21)
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The Clebsch-Gordan coefficient in Eg. (2-21) is given by

CCU[;7,w-7)=

() (1-0+2)! (1+ ) 1 (1-w) !
(-2)! (ew-)L2 (2-w)! 1"

(-1)! (14w-7)! (110} ! (1= )
(l+?).'(l—w¢7){[(,_7)',(h’_?)! ]

(2-22)

The remaining relativistic Hamiltonians, HP and HD’

only involve scalars and thus need not be considered

further.




3. One-Center Expansions

In general the origin of the coordinate system is
arbitrary. The vectors‘gB andAﬁj denote the position of a
nucleus and an electron respectively.

The derivation of the one center expansion for HLL’
HSS and HSL regpectively, consists of three steps. First
one has to express the Y ( Jk,<ij) as a sum of products in
the spherical harmonics of (65,(Pj) and (Bk,yk). Then
(1/'r'jk)n is expanded in a similar manner. Finally the two
expansions are coupled together.

The general addition theorem for the solid spherical

harmonics is given by Rose;l'

'/\_M L.

'B (i) = [u'ﬂ'(zwu)!] 2 3¢ [éﬁ’),‘(:" );Lf,)’fj).,l

L=0 Y}=-L

(3-1)
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The one-center expansion for (l/rjk)n can always be written

in the form18

- = ayy R("'e) L-')Y (6,%:) Y(M)

K =0 V= 2 (3-2)




where R{-n,¢) is a function of Ty and r,. Only the radial
coefficients for n = _,3 and 5 are required. If one uses
the Laplace expansion then18
¢
e
-1 = A
R( )e) 01 _ (3-3)
>
o0 2n+f
3
R('gze) = ('2.8+I)Z r.?.n+¢+3 (3-4)
h=0Q 7
€0
2naf
(2€+l)Z P
R(-,8) = =52 ) (m)(2ts2n13) s (3-5)
wW=0 7

where ry and r<‘stand for the greater or lesser of r, and

J

r,. The coefficients R(-n,@ ) can also be written symmetri-

cally with respect to rj and Iy . There are two such expan-
sions; they involve powers of (r2 + r2)1/2 and (rj + rk)

J k
respectivelyl8’19

n n
R E) = (2ean)y 22U G

-6
n (“*Q*')!!(h-e)!!r2n+\ (3-6)
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| _ (2n+0) 11 f:in r,:'
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(204) % (2ne2)10" 0

RUbse)=—3 7 e e (nog) (3-9)
where r = (rjg + r-kg) 1/2 ,n=F 0+2, P+4, -,
(2k)!! = 2°4 2k and (2k+1)!! = 173" (2k+1);
0 O+n
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Finally Egs. (3-1) and (3-2) are combined using the coupling

14
theorem for spherical harmonics. -
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’A | L+U C(L N‘L;'\/' k)#'K)C(N‘t 0 ’ - )
eyl q:t)= (- Ml AL oL
Kalbvitiazh = e [(29+)(2t+1)(20)! (2N-2L)! T
(3-13)
XCIN-L,0,g; 00)C(L,0)4; k,-v)c(L,6,4;00)

Here the sums over ¢ and t are controlled by the Clebsch-
Gordan coefficients.

One can now apply Eg. (3-12) to the tensorial repre-
sentation of the relativistic Hamiltonians (Egqs. (2-15),

(2-17) and (2-20)). The resulting one-center expansions

are:
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(3-16)

W- __.k)n’] , - W

s .

There i1s a strikirg simiiarity between the second terms

of H and H

1L qq* the difference belng the radial coefficient

R and the appearance of _inesr mcmentum operators in HTL
-l

and spin in HSSC It is interesting tc note that the angu-
lar momentum operafors d4c¢ nct appear in HLLO It is indeed
possible to rewrite this Hamiitonian 1n such a way that it
containg angular momentum terms but the transformed Hamil-
tonian does not simpliify appfeciablyazo In ail these expan-
silons, the variab.es associated with electron j and k are now
separated. In this fecrm the angular part of the matrix ele-
ments of these Hamiliftordians can te carried out in a straight-
forward manner {see Sec. 5,;, A difficulty arises in the

radial integrations since tre coefficients R{-n,f) for n>|

involve infinite sums.
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In the case of HLL and HSL these infinite sums can be
transformed into finite ones by applying the gradient for-
mula to Eqs.v(2—4) and (2-6) respectively. The procedure
makes use of the fact tnat‘gbk/rjk3‘appears in these two

Hamiltonians. By making use of the relationship

r

| .
i - - v—-—r (3_17)
W -

21
and the gradient formula:

p y Vi
T (z)@,)y(gq) \f_ cley, el v )\/4+',Qo,¢)
(-8 ) (renyyp) o

Y (G‘P)(d 'e':‘L )

the M-th component ijijk/rjk3 can be written as

by - (3-19)

M-v v
xC(ZIn; V,-r) Yn(%‘ﬂ')Ye (gwq)n)Ap,n
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where

|/1 ¢
- [+ Me -
0, 0n 2“3) T b e(n-6)

(3-20)

and £(x-y) = 1 for x)y; £€= O for yyx. With these equations

one can rewrite HLL and HSL in the following way

(3-21)

‘”"”ZZZZZLZ 6

k\,J Q o ¥:-£ L=0 X=-t h% "O'I""
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where
Y
G ) _' Lrvtw ] [ (2n+1)(20+1) ] y
(2)!(2-2L)! (29+1) (24+1)
x C (L, =L, 1; x,w-z)c(e:n}oo)c (ém; u,’-7)
(3-22)
X C(n, I-L,9; 7-V,w-l<>c(";"'~;?} 00)
X C(e L'}, v, )L)C(?L+) 00)
2y LW W w
H = 5 Y - ) -
W T LS00 T (g )T ()
- z'nF

Zi Z_c(w 7,%-1) (3-23)

K#) f=0 v=-£ N L)7=-1

7-v 4
x c(€n;y,=1)c(rm 00)Y, %@Ye(%ﬁ)

l

«)'7 w-7 -
A [T le- 2T (e | T ()



20

In a calculation of matrix elements of HLL the angular
integration restricts the ranges of g and t and then
c(0,L,t;00), say, limits the sum over . For Hgp, the an-

gular integration directly limite the sum over ¢ .
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4., Two-Center Expansion

One has to distinguish several regions in two-center
expansions.22 In longe range force calculations the dis-
tance, R, between the two centers is larger than the size
of the charge distributions of the intéracting molecules.
In this case one can expand the Brelt-Pauli Hamiltonian in
a series in inverse powers of R. To obtain two-center ex-
pansions for the.regions where the charge distributions
overlap, one begins with the one-center result, transforms
to the second center and re-expands the result.

The coordinate system used 1n the two-center expan-
sion is given in Fig. 1. The x,y and z axes of the two
coordinate systems are parallel. In general.giis not along
the z axes. However, in most applications.ﬁ is chosen to

lie along the z-axes. The vector‘z specifies the position

J

of electron jJ with respect to center A and‘EL

of electron k referred to center B. The position of the

{
nuclel are designated by T and“:gB respectively.

the position

s 98 =N N .
The quantities Yt(esk’(ij) and ik which occur in
the tensor forms of the Brelt-Pauli Hamiltonian must be
expressed in terms of the variables of the two coordinate
systems. To generalize Eq. (3-1) to two centers, one makes

- —_ - — - '—
use of the relations '£jk = };5 Iy = aj Ti 5 Then
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p N L
HN(‘Q") = [u’lT(’ZN-H)_iJAZ Z (-,)Nﬂ"

L= ==L
> X (4-1)

C(L N-L,N: X M- x)
X [(ZLH)'(ZN 7_L+|)l]fz BN ,_(r )(H (r)

where on the right hand side we have permuted L1 and I

, 1
which introduces the phase factor (—l)N, i

Since I = Xk + 5,
§:§ (ﬁk) can be expanded using Eq. (3-1) to give
Lodd I
(g)=4m2 2 2 )ty [anen!]
L=0 ¥:-L J=0 w=-J
CLLNL N X P X)C(I YL, oL poxes)
[GL+) ! (23+0)! (2N-2L-2341)1]"™
(4-2)

S Yo Y)Y, ®

Ifi{ylies along the z-axes then23

;
rﬁ'hy"w( a N'L'J[ 2N-2L-274]) ;\
N-L=1 Pz R um p-x-w, 0 (4-3)
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and
H _
e =00 Y, (0, %)
N N-L &
=[] ZZZ (N- L-J)'
L=03=0 X=-L

- (N+p) ! IN=p)! h (4-14)
[(?l“)(llﬂ)(ut)!(ux)f (3-px) Haepa X )

L 13 ~N-L-]
[ P
* G0 R

Y 4,4>)Y M,)

-n
jk
distributions is in general very complicated. For n =

The two-center expansion of r for overlaping charge

1

the expansions have been done fcor the overlap regions.22
9 . :

A method has been developed that can be used for the gene-

ral expansion of r For the non-overlapping region a

-n
Jk*
useful expansion has recently been derived by Sack.eﬁ In

this case electrons J and k are assoclated with centers A
and B respectively. The following result is valid for R
25

along the z-axes;



2h

' ( ,) (_ *(?ﬁ'?’z ?b)
-—rl'—n': Z LZ h+€+€/z+'2q‘,2<l K(().»ez)Pg;V)
K 6,6,6 Vv CH
G +0,+ 0, =even (4-5)
/ v -V / !
xG(nl-&,&,Q;q)h e ) Y; (QJCPJ)YF (9.4,4’” )
where
+| +e 1!
K(&,Fz,ps; V):. [z €+p'z 83)].
[30+0-e))! [4(0+6- 61 [3 (6 0-0)])!
%
(zeu)(mw)lz?y')(ma-&).'mwg-&)!l@&-e,)f}
X (4-6)
(&1-&*?3*')!

X C(P, A &; -y, u)

and
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G(hi F,) 01»031' %*i rd"r!' )=

?_?H'P,_-f g+4+ r["i‘(n*' 0 +0,40,)+ %{]ﬁ
I(2) T[] (204 29+)!1 (20, +24+1) g 4]

(4-7)

+0, ks
(T [40eGfmtn)raet] 1 (1

In Eq. (4-7) V(x) is the Gamma function and the double
factorials are defined in Sec. 3. The two center expansion
for the orbit;orbit, spin;spin, and spin-orbit Hamiltonians
can now be obtained by substituting Egs. (4-4) and (4-5) in
Egs. (2-15), (2:17)“and (2-20) respectively and coupling
the various spherical harmonics. In the resulting equa-
fion526 the variables associated with centers A and B are
separated,

The Wigner-Eckart theorem12 when applied to the angular
parts of the matrix elements of HLL’ HSS’ and HSL yields

selection rules for these Hamiltonlans.
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5. Matrix Elements

The one-and two-center expansions of the Breit-Pauli

Hamiltonians HLL’ HSS’ and HSL are of the general form

H, ~ Z{ }Y ‘P)Y (6,,% MJ)_Ir.y(,&) (5-1)

HSSNX{ }Y (QCP)Y 6 (P) )T (..x) (5-2)
X -w -1
H, ~7 § Y0, %) T, (pN T, (3 . (5-3)

If the wave function?{'is of the type

= chrli_\{w‘(fcé:) (5-4)

| oY




B L P
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where

Yoo = BlaY, (0,876 6

then the matrix elements of the Hamiltonians can be cal-
culated in a straightforward manner. In Eq. (5-5) 'Zﬂ(§:)
o)
is a two component spinor (ui =t 1/2).
. —
In H; and Hg one first has to operate with Ty (Bj)

on the wave function. Application of the gradient formula

(Eq. (3-18)) yields

T, (P)@mY (6;9.) 2c(em,w)

(5-6)

: n-w

X C(PI u;OO) \(u (eiq)i)Agw(rJ)
where
b
_ {20+ d® ¢

Ac,e+| = (37,?5) (H?J‘ T @)

(5-7)

'/z
AQ,H ) ('ZTQQ\:-'T) (%ll% * %‘:L Q)
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with all the other A's vanishing because of the trilangular
condition in C( @,1,1-300). The angular integrations in

27
HLL’ HSS’ and HSL are now all of the same form, namely

J)(% )

1%
Yor(%'%)l Yehzgj.qﬁ) 7

(5-8)

%_

- (QQ‘P,)(%“)]C(CC}P:‘ M,V,M’)C(Pqe'; OO) ‘

ym (20'+1)

The selection rules for this angular integration can be
directly obtained from the Clebsch-Gordan coefficients.
f 1
The integral vanishes unless €+ ?.iﬁqfl ¢ - el and the
! v
sum e-k e'+ q is even. Alsom. =m +:y.
The integration over the spin variables is given by

2y
the expression
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N~
[ o
.

f
<
j
-
q?
O
S

h

B R ——"

The remaining radial integrals depend on the particular

choice of qg(ri) and cannot be done in a general manner.
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Flg. 1

Coordinate system for two-center expansions
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